
A Modular Proof of Semantic Completeness for Normal
Systems beyond the Modal Cube, Formalised in HOLMS
Antonella Bilotta1,∗, Marco Maggesi2 and Cosimo Perini Brogi3,∗

1Scuola Normale Superiore di Pisa
2Università di Firenze
3Scuola IMT Alti Studi Lucca

Abstract
We communicate here the most recent extension of HOLMS, our library for modal logics aimed at introducing
automated modal reasoning within the HOL Light proof assistant. Based on a uniform proof strategy, we present
a more refined formal proof of completeness for systems within and beyond the S5-normal modal cube, notably
Gödel-Löb logic. We report on our development by adopting a measure of its modularity based on Strachey’s
distinction between parametric and ad hoc polymorphic code.

Keywords
Modal logic, HOL Light, Completeness theorems, Interactive theorem proving, Proof libraries

1. Introduction

Starting from the 1970s, modal logic has proven to be a central tool in various technical and scientific
disciplines, including knowledge representation, formalisation of reasoning under uncertainty, the
study of multi-agent systems, the analysis of computational processes, the verification of consistency of
normative corpora, and the modelling of decision-making processes [1, 2, 3, 4]. In computer science,
different modal operators are also able to capture abstract properties of: computation with side effects [5,
6, 7]; properties of program executions [8, 9]; applicative functors in functional programming [10, 11, 12];
recursive calls in programming languages [13, 14]; and information flow and knowledge dynamics in
communication protocols [15, 16, 17, 18].
These and many other examples show that the interest of computer science in modal logic extends

beyond the boundaries of the so-called 𝑆5-normal cube, i.e. the class of normal modal logics obtained
from the minimal axiomatic system 𝕂 by combining the axioms among D, T, B, 4, and 5. The proper
inclusions between these systems can be summarised graphically in the cube shown in Figure 1.
For each system in the modal cube, it is possible to provide a proof of adequacy (soundness and

completeness) for the standard relational semantics – also known as “possible worlds” or “Kripke”
semantics – by applying in a uniform and modular way the canonical model method, followed by
appropriate filtration lemmas specific to each system under consideration [19].
However, this uniform and modular approach fails for specific and relevant cube extensions, even

when remaining within the classical and normal modal systems class. Notoriously, Gödel-Löb logic

ICTCS 2025: Italian Conference on Theoretical Computer Science, September 10–12, 2025, Pescara, Italy

∗Corresponding authors.

Envelope-Open antonella.bilotta@edu.unifi.it (A. Bilotta); marco.maggesi@unifi.it (M. Maggesi); cosimo.perinibrogi@imtlucca.it (C. Perini
Brogi)

GLOBE https://github.com/Antonella-Bilotta/ (A. Bilotta); https://sites.google.com/unifi.it/maggesi/ (M. Maggesi); https://sysma.
imtlucca.it/people/cosimo-perini-brogi (C. Perini Brogi)

Orcid 0009-0005-6263-8717 (A. Bilotta); 0000-0003-4380-7691 (M. Maggesi); 0000-0001-7883-5727 (C. Perini Brogi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:antonella.bilotta@edu.unifi.it
mailto:marco.maggesi@unifi.it
mailto:cosimo.perinibrogi@imtlucca.it
https://github.com/Antonella-Bilotta/
https://sites.google.com/unifi.it/maggesi/
https://sysma.imtlucca.it/people/cosimo-perini-brogi
https://sysma.imtlucca.it/people/cosimo-perini-brogi
https://orcid.org/0009-0005-6263-8717
https://orcid.org/0000-0003-4380-7691
https://orcid.org/0000-0001-7883-5727
https://creativecommons.org/licenses/by/4.0/deed.en

Axiom schema Semantic condition

D ∶ □𝐴 → ♦𝐴 Seriality
T ∶ □𝐴 → 𝐴 Reflexivity
B ∶ 𝐴 → □♦𝐴 Symmetry
4 ∶ □𝐴 → □□𝐴 Transitivity
5 ∶ ♦𝐴 → □♦𝐴 Euclidianness
GL ∶ □(□𝐴 → 𝐴) → □𝐴 Transitivity and Noetherianity

K KB

KB5=K4B5
=K4B

K4
D

T

S4=T4

S5=T5=B5
=S45=D4B
=DB5=D4B5

B=TB

DB

D4
D45

K45

D5

K5

Figure 1: The 𝑆5-normal cube. For any systems S,S’, an arrow S → S′ denotes proper inclusion S ⊊ S′, i.e., that S’
is logically stronger than S.

(GL) is one of the most significant exceptions to the cube: although the logic is complete for standard
relational semantics, the proof of this property cannot proceed via a canonical construction–partly
due to issues related to incompactness [20, 21]. Nonetheless, it is possible to use a different, yet
equally uniform and modular strategy, which subsumes the “canonical model + filtrations” method to
obtain adequacy and the finite model property for GL and the systems within the 𝑆5-normal cube, as
documented in [22, Ch. 5].

In the present work, we report on the latest update of our implementation of that proof strategy for
completeness within the more general HOLMS framework, which currently covers the systems K, T,
K4, S4, B, S5 and GL.

1.1. Source code

The latest version of HOLMS is freely accessible from our repository and is
archived on Software Heritage . The readme file from the git repository and the project
webpage provide some pointers to the main contents of the library.

2. Modular completeness proof, formalised

2.1. HOLMS framework

Our HOLMS framework (HOL Light Library for Modal Systems) [23, 24] has incorporated from its
inception a formalisation of the aforementioned adequacy proof with respect to finite models. Initially,
this formalisation addressed solely GL [25, 26]. Subsequently, we extended it to encompass three
additional normal systems within the cube: K, T, and K4. In the present setting, we present a further
extension of it, covering the adequacy proofs and the decision procedures for S4, B and S5.
Our research pursuits with HOLMS are twofold, addressing both practical implementation and

theoretical foundations.

From the practical perspective, we aim to enhance HOL Light’s capabilities in automated modal
reasoning. The current version of HOLMS extends the proof assistant’s deductive apparatus by in-
troducing a novel inference rule of the proof assistant (HOLMS_RULE). This rule determines whether a
given input modal formula constitutes a theorem within a specified modal logic selected from K, T, K4,
S4, B, S5 and GL. When the formula fails to qualify as a theorem, the rule generates an appropriate
countermodel tailored to the established logic.1 The automation process is grounded in a shallow
embedding of root-first proof search within the labelled sequent calculus associated with each logic

1The general mechanism provides a semi-decision procedure for K4. However, the literature on labelled sequent calculi offers
uniform solutions to this issue [27], which may be incorporated in future versions of HOLMS.

https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=14-15
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=36-38
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=17-18
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=40-42
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=23-24
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=54-58
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=20-21
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=48-52
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=26-27
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=60-64
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=29-30
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml;lines=108-123
https://github.com/HOLMS-lib/HOLMS
https://archive.softwareheritage.org/swh:1:dir:36edca29f53f3fdd0a7fc675702990743eda4c8d;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99
https://github.com/HOLMS-lib/HOLMS/blob/main/README.md
https://holms-lib.github.io/
https://holms-lib.github.io/

under consideration [28, 29]. Henceforth, in HOLMS we have three interconnected presentations of
normal modal logics: (i) axiomatic calculi, (ii) relational semantics (both deeply embedded), and (iii)
labelled sequent calculi, which we shallow embed in the goal-stack mechanism of HOL Light as a
certificate of correctness of the decision procedure behind HOLMS_RULE.

From the theoretical standpoint, we intend to develop the library according to a precisely defined
modular architecture. Following a compositional implementation methodology, this development
generalises our previous 𝔾𝕃 library for HOL Light. This methodology centres upon the previously
referenced scalable and uniform proof of semantic adequacy. To precisely measure the proof modularity
– and the same property of the associated formalisation – we implemented a precise coding discipline,
inspired by [30]. In developing HOLMS, we have distinguished between: parametric polymorphic code,
fully independent of specific parameter instantiations; and ad-hoc polymorphic code, whose components
are tailored to the modal logic under consideration. We use that colour convention consistently
throughout the following pages.2 Figure 2 summarises the modularity of the current version of our
code, together with the specific files where each component is implemented. Here, * ranges over the
different modal logics considered, that is * ∈ {𝕂 , 𝕋 , 𝕂4 , 𝕊4 , 𝔹 , 𝕊5 , 𝔾𝕃

}.

Syntax modal.ml
Semantics modal.ml

Correspondence Theory Concepts parametric_correspondence.ml
Lemmata ad_hoc_correspondence.ml

Soundness gen_completeness.ml

Completeness

“Standard” Model gen_completeness.ml
Truth Lemma gen_completeness.ml
Counteromodel Lemma gen_completeness.ml
“Standard” Relation *_completeness.ml
Identification of the “Standard” Model *_completeness.ml
Type Generalisation *_completeness.ml

Shallow Embedding gen_decid.ml and *_decid.ml
Decision Procedure gen_decid.ml and *_decid.ml

Figure 2: Measure of the modularity of our implementation

2.2. Syntax and semantics

In our formalisation of modal systems, HOL Light serves as the metatheory, while modal logics are
treated as object logics. This distinction requires the embedding of an object language within HOL
Light—to explicitly differentiate between formal statements of the modal language (e.g. □𝐴 → □□𝐴)
and statements about modal systems in the metatheory (e.g. |- ∀𝐴. ⊢𝕂4 □𝐴 → □□𝐴).
First, we define a grammar for modal formulas by an inductive definition . Next, we uniformly

introduce axiomatic proof systems. To avoid code duplication in the embeddings of Hilbert calculi for
normal modal logics, we define a ternary deducibility relation 𝒮 .ℋ ⊢ 𝐴 that is parametric to a set of
axiom schemata 𝒮 and considers a set of hypotheses ℋ. Such a formal predicate conceptualises the
abstract notion of deducibility close to the one discussed in [31], based on a minimal deductive system
which extends the calculus 𝕂 – by including the axiom schema K ∶ □(𝐴 → 𝐵) → (□𝐴 → □𝐵) – and is
modularly extended by instantiating 𝒮.

Definition 1 (Proof system). The ternary predicate 𝒮 .ℋ ⊢ 𝐴, denoting the deducibility of a formula
𝐴 from a set of hypotheses ℋ in an axiomatic extension of logic K via schemas in the set 𝒮, is inductively
defined by the following conditions:

2Notice that, although HOL Light lacks explicit mechanisms to support parametric and/or ad hoc polymorphism (unlike
e.g. Isabelle/HOL), this distinction remains helpful in presenting the abstract structure of our (formalised) proof and discussing
the potential portability of our results to proof assistants that implement this distinction through specific mechanisms.

https://archive.softwareheritage.org/swh:1:cnt:f9c4b782f5a561df47ad3ae9772b0317637487a9;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:bcfca50939d31639e29e4470f7773c57478a0ebd;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:7ba9d1df0d4ce9d2b63ec32c27f537f1f6df027a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/t_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:44c0a67f7158d372a0bbbd03ac82403ea7295e6a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/t_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:59a681c992d26e687768ac7f864a7a15097e5d80;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k4_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:147bbba9f635040aee88082da7dc4b514f281511;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k4_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:371434478ce629002b391f47c6045a9844021a26;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s4_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:9d98d06076ec6b1aae3455329ee652ece50ab012;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s4_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:2d86dd1091e2e9e64683f37b9c2bf18eda94881e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/b_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:21810e942a854ef6fdddc2f3f4df6f5ef5a524b5;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/b_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:8cab0d67b79984eb7f539bc9767260f192ea00f9;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s5_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:728460c950488b1924ab6d7ab6dc5145bb384959;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s5_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:31cc65b97a45c683a82a65bb32cf3317694b8bc0;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gl_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:31cc65b97a45c683a82a65bb32cf3317694b8bc0;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gl_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:e2e4348982a58465694c4b0e52126af74989beb2;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gl_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml
https://archive.softwareheritage.org/swh:1:cnt:e2ee7fb28c429a269783ad23873e0c19531bfa0e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/ad_hoc_correspondence.ml
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml
https://archive.softwareheritage.org/swh:1:cnt:7c271c55e814474d583dba4b893746c5d25c6707;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:7c271c55e814474d583dba4b893746c5d25c6707;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_decid.ml
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml;lines=25-34
https://archive.softwareheritage.org/swh:1:cnt:7dca609c15b7e9f2f5f05544d36c95a179b4d226;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/calculus.ml;lines=74-80

• For every instance 𝐴 of axiom schemas for the calculus 𝕂, 𝒮 .ℋ ⊢ 𝐴;
• For every instance 𝐴 of schemas in 𝒮, 𝒮 .ℋ ⊢ 𝐴;
• For every 𝐴 ∈ ℋ, 𝒮 .ℋ ⊢ 𝐴;
• If 𝒮 .ℋ ⊢ 𝐵 → 𝐴 and 𝒮 .ℋ ⊢ 𝐵, then 𝒮 .ℋ ⊢ 𝐴;
• If 𝒮 .∅ ⊢ 𝐴, then 𝒮 .ℋ ⊢ □𝐴 for any set of formulas ℋ.

For that deducibility relation, we provide a formal proof of

Theorem 1 (Deduction theorem). For any modal formulas 𝐴, 𝐵 and any sets of formulas 𝒮 ,ℋ, the
following equivalence holds: 𝒮 .ℋ ∪ {𝐵} ⊢ 𝐴 iff 𝒮 .ℋ ⊢ 𝐵 → 𝐴.

Moving to the semantics side, the current version of HOLMS contains the formalisation of basic
notions of frames, relational models and validity therein via a forcing relation . Furthermore, we
formalise the notion of validity in a class of frames .3 Next, we formalise results from correspon-
dence theory [32] collected in the table from Figure 1 by also defining a general predicate CHAR 𝒮 ,
representing the class of frames characteristic to the schema(s) 𝒮. We leverage it for stating and proving

Theorem 2 (Soundness). Let 𝒮 be a set of axiom schemata. Let 𝔖 be the characteristic class of frames
for 𝒮. For every 𝐴 ∈ Form□, if 𝒮 .∅ ⊢ 𝐴 then 𝔖 ⊨ 𝐴.

From those results, we can easily prove the consistency of the proof systems introduced by Def. 1.

2.3. Completeness theorem

The current version of HOLMS includes a refined formal proof of semantic completeness of any system
𝕃 ∈ {𝕂 , 𝕋 , 𝕂4 , 𝕊4 , 𝔹 , 𝕊5 , 𝔾𝕃 }. The modularity of the strategy from [22] lets us avoid
code duplication in several parts of the implementation. The following ad-hoc polymorphic theorem
then condenses the resulting completeness statement:

Theorem 3 (Completeness). Let 𝒮 be a set of axiom schemata. Let 𝔖 be the characteristic class of finite
frames for 𝒮. For every 𝐴 ∈ Form□, if 𝔖 ⊨ 𝐴, then 𝒮 .∅ ⊢ 𝐴 .

Proof Sketch. We proceed by contraposition, and prove that—given a generic modal formula 𝐴—if
𝒮 .∅ ⊬ 𝐴, then 𝔖 ⊭ 𝐴.
This means that for each set of axioms𝒮 and for eachmodal formula𝐴, we have to find a countermodel

ℳ𝒮
𝐴 inhabiting𝔖, and a ‘counterworld’ 𝑤𝒮

𝐴 inhabitingℳ𝒮
𝐴 such that 𝑤𝒮

𝐴 ⊮ℳ𝒮
𝐴
𝐴. To do so, we formalise

the argument in [22, Ch. 5] and implement the following key strategy.

Parametric part of the proof :

1. We identify a parametric notion of (counter)model ℳ𝒮
𝐴 in 𝔖 having: maximal consistent lists of

modal formulas as possible worlds; an accessibility relation that verifies two given constraints; a
valuation such that 𝑉𝒮

𝐴 (𝑞, 𝑤) iff 𝑞 is a subformula of 𝐴 and 𝑞 ∈ 𝑤. (GEN_STANDARD_MODEL)

2. We prove a general truth-lemma independent from the considered 𝒮 and 𝐴. This step allows the
reduction of the notion of forcing (𝑤 ⊩ℳ𝒮

𝐴
𝐵) to membership (𝐵 ∈ 𝑤). (GEN_TRUTH_LEMMA)

3. We identify a ‘counterworld’ 𝑋 inℳ𝒮
𝐴 such that 𝐴 ∉ 𝑋 and thus 𝑋 ⊮ℳ𝑆

𝐴
𝐴.

(GEN_COUNTERMODEL_ALT)

Ad hoc polymorphic part of the proof :

I. For each system 𝒮, identification of its specific countermodel ℳ𝒮
𝐴, and in particular of its accessi-

3We refer to our previous [23] for the details of the implementation.

https://archive.softwareheritage.org/swh:1:cnt:7dca609c15b7e9f2f5f05544d36c95a179b4d226;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/calculus.ml;lines=1039-1052
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml;lines=105-120
https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml;lines=127-128
https://archive.softwareheritage.org/swh:1:cnt:784d6b0972845d2560a6e77b86e2e456c32c366f;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/parametric_correspondence.ml;lines=49-52
https://archive.softwareheritage.org/swh:1:cnt:784d6b0972845d2560a6e77b86e2e456c32c366f;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/parametric_correspondence.ml;lines=81-90
https://archive.softwareheritage.org/swh:1:cnt:f9c4b782f5a561df47ad3ae9772b0317637487a9;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k_completeness.ml;lines=187-204
https://archive.softwareheritage.org/swh:1:cnt:7ba9d1df0d4ce9d2b63ec32c27f537f1f6df027a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/t_completeness.ml;lines=284-301
https://archive.softwareheritage.org/swh:1:cnt:59a681c992d26e687768ac7f864a7a15097e5d80;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/k4_completeness.ml;lines=368-386
https://archive.softwareheritage.org/swh:1:cnt:371434478ce629002b391f47c6045a9844021a26;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s4_completeness.ml;lines=409-427
https://archive.softwareheritage.org/swh:1:cnt:2d86dd1091e2e9e64683f37b9c2bf18eda94881e;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/b_completeness.ml;lines=550-568
https://archive.softwareheritage.org/swh:1:cnt:8cab0d67b79984eb7f539bc9767260f192ea00f9;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/s5_completeness.ml;lines=535-553
https://archive.softwareheritage.org/swh:1:cnt:31cc65b97a45c683a82a65bb32cf3317694b8bc0;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gl_completeness.ml;lines=448-466
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml;lines=39-42
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml;lines=48-208
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml;lines=554-573

bility relation 𝑅𝑒𝑙𝒮𝐴;

II. Verification that this model satisfies the following two technical requirements for 𝑅𝑒𝑙𝒮𝐴:

a. ⟨𝑊𝐴
𝒮 , 𝑅𝑒𝑙𝐴𝒮 ⟩ ∈ 𝔖 (𝒮_MAXIMAL_CONSISTENT);

b. for all 𝐵 ∈ Form□, if □𝐵 is a subformula of 𝐴 then, for every 𝑤 ∈ 𝑊𝐴
𝒮 , □𝐵 ∈ 𝑤 if and only if,

for all 𝑥 ∈ 𝑊𝐴
𝒮 , 𝑤𝑅𝑒𝑙𝐴𝒮 𝑥 implies 𝐵 ∈ 𝑥 (𝒮_ACCESSIBILITY_LEMMA).

As a technical aside, we notice that for step 2, we work on worlds that are lists of formulas without
repetitions for purely practical reasons. Because of that choice, the formal proof of Theorem 3 establishes
completeness w.r.t. frames sitting on the type-theoretic domain of formula lists. We overcome that
annoying consequence of our implementation choice by applying a type-theoretic version of the
bisimulation invariance lemma [33] (BISIMILAR_VALID) which allows us to prove completeness
w.r.t. any infinite domain – including formula sets commonly used in this kind of constructions – thanks
also to the auxiliary lemma GEN_LEMMA_FOR_GEN_COMPLETENESS .

3. Related and future work

By HOLMS, we aim to equip a proof assistant with a uniform and compositional mechanism for decision
procedures for modal logics. To achieve that, the mechanisation of completeness results we have
presented here is a key step, independently of the logic under consideration.

In our development, we have been inspired by independent works that individually present relevant
aspects such as the natural extensibility of decision procedures of [34, 35, 36, 37, 38, 39] and the analogous
generality of the formal proofs of completeness via canonical model constructions exhibited in [40, 41].
By merging those aspects in a uniform framework, we have managed to mechanise in a modular,
uniform, and general way six central systems of the modal cube (K, T, K4, S4, B, S5) – already captured
independently by those works – plus Gödel-Löb logic, which is one of the most important systems
beyond the modal cube. At the current stage, the HOLMS library also contains a fully formalised
uniform proof of adequacy for the seven normal modal systems w.r.t. relational semantics.4

A basic future task is thus to extend HOLMS to the entire modal cube [44] and further provability
logics [45].
Another goal is to support multimodal languages by indexing modal operators – treating current

monomodal systems as a special case – thereby significantly enhancing the expressiveness of the
framework and broadening its potential applications in software and system verification [46, 47], [48,
49], [50], [51].

We also aim to integrate deep embeddings of enriched sequent calculi and their metatheory. That
implementation would enable using HOLMS for interesting proof-theoretic investigations and facilitate
integration with external derivation-search tools.

Another direction is generalising HOLMS to non-normal modal logics (with neighbourhood seman-
tics) [52, 53, 54] and intuitionistic/constructive modalities [55, 56, 57], which are increasingly relevant
in computer science. This extension would require adapting our methods and relaxing the current
parametric approach to semantic adequacy.
More importantly, we plan to apply our modular mechanisation of the completeness theorem(s) to

improve the performance of the (semi)decision procedures in HOLMS to cover more efficiently our
proof-search mechanism for the systems we have discussed in the previous pages.

4A different methodology based on shallow embeddings of modal reasoning in HOL is documented in [42, 43].

https://archive.softwareheritage.org/swh:1:cnt:9d2954367005ed92697a5f46ad4055247ca76f5a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/modal.ml;lines=368-377
https://archive.softwareheritage.org/swh:1:cnt:eabb7fab8b46b89921611ae8849f914a05e4507a;origin=https://github.com/HOLMS-lib/HOLMS;visit=swh:1:snp:b46c359d9d4f6f287b4c9042c6b589adb93443c0;anchor=swh:1:rev:4f403993e2ef5e68c2599cf78d18f7ef54310b99;path=/gen_completeness.ml;lines=579-687

Acknowledgments

This work was partially funded by: the project SERICS – Security and Rights in CyberSpace PE0000014,
financed within PNRR, M4C2 I.1.3, funded by the European Union - NextGenerationEU (MUR Code:
2022CY2J5S, CUP: D67G22000340001); the Istituto Nazionale di Alta Matematica – INdAM group
GNSAGA; the International Research Network “Logic and Interaction”; the EC-COST Action (CA20111)
“EuroProofNet”; the research project “Differential, Algebraic, Complex and Arithmetic Geometry
(2025)”.

Declaration on generative AI

The authors have not employed any Generative AI tools.

References

[1] P. Blackburn, J. F. A. K. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, volume 3 of
Studies in logic and practical reasoning, North-Holland, 2007. URL: https://www.sciencedirect.com/
bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C.

[2] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, volume 53 of Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press, 2001. URL: https://doi.org/10.1017/
CBO9781107050884. doi:10.1017/CBO9781107050884.

[3] C. Stirling, Modal and Temporal Properties of Processes, Texts in Computer Science, Springer,
2001. URL: https://doi.org/10.1007/978-1-4757-3550-5. doi:10.1007/978-1-4757-3550-5.

[4] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, J. Srba, Reactive systems: modelling, specification and
verification, Cambridge University Press, 2007.

[5] G. Plotkin, M. Pretnar, A logic for algebraic effects, in: 2008 23rd Annual IEEE symposium on
logic in computer science, IEEE, 2008, pp. 118–129.

[6] A. Bauer, M. Pretnar, Programming with algebraic effects and handlers, Journal of logical and
algebraic methods in programming 84 (2015) 108–123.

[7] J. Power, Generic models for computational effects, Theoretical Computer Science 364 (2006)
254–269.

[8] D. Harel, First-Order Dynamic Logic, volume 68 of Lecture Notes in Computer Science, Springer,
1979. URL: https://doi.org/10.1007/3-540-09237-4. doi:10.1007/3-540-09237-4.

[9] D. Harel, D. Kozen, J. Tiuryn, Dynamic Logic, MIT Press, 2000.
[10] C. McBride, R. Paterson, Applicative programming with effects, J. Funct. Program. 18 (2008) 1–13.

URL: https://doi.org/10.1017/S0956796807006326. doi:10.1017/S0956796807006326.
[11] C. Perini Brogi, Curry-Howard-Lambek Correspondence for Intuitionistic Belief, Studia Logica

109 (2021) 1441–1461. doi:10.1007/S11225-021-09952-3.
[12] D. Rogozin, Categorical and algebraic aspects of the intuitionistic modal logic IEL - and its predicate

extensions, J. Log. Comput. 31 (2021) 347–374. URL: https://doi.org/10.1093/logcom/exaa082.
doi:10.1093/LOGCOM/EXAA082.

[13] H. Nakano, A modality for recursion, in: Proceedings Fifteenth Annual IEEE Symposium on Logic
in Computer Science (Cat. No. 99CB36332), IEEE, 2000, pp. 255–266.

[14] A. W. Appel, P.-A. Mellies, C. D. Richards, J. Vouillon, A very modal model of a modern, major,
general type system, in: Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 2007, pp. 109–122.

[15] J. Y. Halpern, Y. Moses, M. R. Tuttle, A knowledge-based analysis of zero knowledge (preliminary
report), in: J. Simon (Ed.), Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, ACM, 1988, pp. 132–147. URL: https://doi.org/
10.1145/62212.62224. doi:10.1145/62212.62224.

[16] I. Leustean, B. Macovei, DELP: Dynamic epistemic logic for security protocols, 2021 23rd

https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
http://dx.doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/978-1-4757-3550-5
http://dx.doi.org/10.1007/978-1-4757-3550-5
https://doi.org/10.1007/3-540-09237-4
http://dx.doi.org/10.1007/3-540-09237-4
https://doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1007/S11225-021-09952-3
https://doi.org/10.1093/logcom/exaa082
http://dx.doi.org/10.1093/LOGCOM/EXAA082
https://doi.org/10.1145/62212.62224
https://doi.org/10.1145/62212.62224
http://dx.doi.org/10.1145/62212.62224

International Symposium on Symbolic andNumeric Algorithms for Scientific Computing (SYNASC)
(2021) 275–282. URL: https://api.semanticscholar.org/CorpusID:237491844.

[17] F. Rajaona, I. Boureanu, R. Ramanujam, S. Wesemeyer, Epistemic model checking for privacy, in:
2024 IEEE 37th Computer Security Foundations Symposium (CSF), IEEE Computer Society, Los
Alamitos, CA, USA, 2024, pp. 1–16. URL: https://doi.ieeecomputersociety.org/10.1109/CSF61375.
2024.00020. doi:10.1109/CSF61375.2024.00020.

[18] M. Gattinger, J. van Eijck, Towards model checking cryptographic protocols with dynamic
epistemic logic, in: Proc. LAMAS, Citeseer, 2015, pp. 1–14.

[19] M. Fitting, R. L. Mendelsohn, First-order Modal Logic. Second Edition, Springer, SYLI, volume 480,
2023.

[20] R. L. Verbrugge, Provability Logic, in: E. N. Zalta, U. Nodelman (Eds.), The Stanford Encyclopedia
of Philosophy, Summer 2024 ed., Metaphysics Research Lab, Stanford University, 2024.

[21] G. Japaridze, D. De Jongh, The logic of provability, in: Handbook of Proof Theory. Studies in
Logic and the Foundations of Mathematics, volume 137, Elsevier, 1998, pp. 475–546.

[22] G. Boolos, The logic of provability, Cambridge University Press, 1995.
[23] A. Bilotta, M. Maggesi, C. Perini Brogi, L. Quartini, Growing HOLMS, a HOL Light Library for

Modal Systems, in: D. Porello, C. Vinci, M. Zavatteri (Eds.), Short Paper Proceedings of the 6th
International Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and
Synthesis, OVERLAY 2024, Bolzano, Italy, November 28-29, 2024, volume 3904 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024, pp. 41–48. URL: https://ceur-ws.org/Vol-3904/paper5.pdf.

[24] A. Bilotta, M. Maggesi, C. Perini Brogi, A HOL Light Library for Modal Systems (HOLMS), https:
//holms-lib.github.io/, 2025. Accessed: 2025-06-28.

[25] M. Maggesi, C. Perini Brogi, A Formal Proof of Modal Completeness for Provability Logic, in:
L. Cohen, C. Kaliszyk (Eds.), 12th International Conference on Interactive Theorem Proving (ITP
2021), volume 193 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, pp. 26:1–26:18. URL: https://drops.
dagstuhl.de/opus/volltexte/2021/13921. doi:10.4230/LIPIcs.ITP.2021.26.

[26] M. Maggesi, C. Perini Brogi, Mechanising Gödel-Löb Provability Logic in HOL Light, J.
Autom. Reason. 67 (2023) 29. URL: https://doi.org/10.1007/s10817-023-09677-z. doi:10.1007/
S10817-023-09677-Z.

[27] D. Garg, V. Genovese, S. Negri, Countermodels from sequent calculi in multi-modal logics, in:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,
Dubrovnik, Croatia, June 25-28, 2012, IEEE Computer Society, 2012, pp. 315–324. URL: https:
//doi.org/10.1109/LICS.2012.42. doi:10.1109/LICS.2012.42.

[28] S. Negri, Proofs and countermodels in non-classical logics, Logica Universalis 8 (2014) 25–60.
[29] S. Negri, J. von Plato, Proof analysis: a contribution to Hilbert’s last problem, Cambridge University

Press, 2011.
[30] C. Strachey, Fundamental concepts in programming languages, Higher-order and symbolic

computation 13 (2000) 11–49.
[31] M. Fitting, Proof methods for modal and intuitionistic logics, volume 169, Springer Science &

Business Media, 2013.
[32] J. Van Benthem, Correspondence Theory, Springer Netherlands, Dordrecht, 2001, pp. 325–408.

URL: https://doi.org/10.1007/978-94-017-0454-0_4. doi:10.1007/978-94-017-0454-0_4.
[33] C. Stirling, Bisimulation and logic, Cambridge Tracts in Theoretical Computer Science, Cambridge

University Press, 2011, p. 173–196.
[34] C. Nalon, C. Dixon, U. Hustadt, Modal resolution: proofs, layers, and refinements, ACM Transac-

tions on Computational Logic (TOCL) 20 (2019) 1–38.
[35] C. Nalon, U. Hustadt, F. Papacchini, C. Dixon, Local reductions for the modal cube, in: International

Joint Conference on Automated Reasoning, Springer International Publishing Cham, 2022, pp.
486–505.

[36] C. Nalon, U. Hustadt, F. Papacchini, C. Dixon, Buy one get 14 free: Evaluating local reductions for
modal logic, in: B. Pientka, C. Tinelli (Eds.), Automated Deduction – CADE 29, Springer Nature

https://api.semanticscholar.org/CorpusID:237491844
https://doi.ieeecomputersociety.org/10.1109/CSF61375.2024.00020
https://doi.ieeecomputersociety.org/10.1109/CSF61375.2024.00020
http://dx.doi.org/10.1109/CSF61375.2024.00020
https://ceur-ws.org/Vol-3904/paper5.pdf
https://holms-lib.github.io/
https://holms-lib.github.io/
https://drops.dagstuhl.de/opus/volltexte/2021/13921
https://drops.dagstuhl.de/opus/volltexte/2021/13921
http://dx.doi.org/10.4230/LIPIcs.ITP.2021.26
https://doi.org/10.1007/s10817-023-09677-z
http://dx.doi.org/10.1007/S10817-023-09677-Z
http://dx.doi.org/10.1007/S10817-023-09677-Z
https://doi.org/10.1109/LICS.2012.42
https://doi.org/10.1109/LICS.2012.42
http://dx.doi.org/10.1109/LICS.2012.42
https://doi.org/10.1007/978-94-017-0454-0_4
http://dx.doi.org/10.1007/978-94-017-0454-0_4

Switzerland, Cham, 2023, pp. 382–400.
[37] D. Pattinson, N. Olivetti, C. Nalon, Resolution calculi for non-normal modal logics, in: International

Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Springer, 2023,
pp. 322–341.

[38] U. Hustadt, F. Papacchini, C. Nalon, C. Dixon, Model construction for modal clauses, in: Interna-
tional Joint Conference on Automated Reasoning, Springer, 2024, pp. 3–23.

[39] C. Nalon, Efficient theorem-proving for modal logics, in: A. Ciabattoni, D. Gabelaia, I. Sedlár
(Eds.), Advances in Modal Logic, AiML 2024, Prague, Czech Republic, August 19-23, 2024, College
Publications, 2024, pp. 13–16.

[40] A. H. From, Formalized soundness and completeness of epistemic logic, in: A. Silva, R. Wasser-
mann, R. J. G. B. de Queiroz (Eds.), Logic, Language, Information, and Computation - 27th In-
ternational Workshop, WoLLIC 2021, Virtual Event, October 5-8, 2021, Proceedings, volume
13038 of Lecture Notes in Computer Science, Springer, 2021, pp. 1–15. URL: https://doi.org/10.1007/
978-3-030-88853-4_1. doi:10.1007/978-3-030-88853-4_1.

[41] A. H. From, An Isabelle/HOL Framework for Synthetic Completeness Proofs, in: Proceedings
of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
’25, Association for Computing Machinery, New York, NY, USA, 2025, p. 171–186. URL: https:
//doi.org/10.1145/3703595.3705882. doi:10.1145/3703595.3705882.

[42] C. Benzmüller, Faithful logic embeddings in HOL - A recipe to have it all: deep and shallow,
automated and interactive, heavy and light, proofs and counterexamples, meta and object level,
CoRR abs/2502.19311 (2025). URL: https://doi.org/10.48550/arXiv.2502.19311. doi:10.48550/ARXIV.
2502.19311. arXiv:2502.19311.

[43] C. Benzmüller, B. W. Paleo, Higher-order modal logics: Automation and applications, in: W. Faber,
A. Paschke (Eds.), Reasoning Web. Web Logic Rules - 11th International Summer School 2015,
Berlin, Germany, July 31 - August 4, 2015, Tutorial Lectures, volume 9203 of Lecture Notes in
Computer Science, Springer, 2015, pp. 32–74. URL: https://doi.org/10.1007/978-3-319-21768-0_2.
doi:10.1007/978-3-319-21768-0_2.

[44] R. Schmidt, Advances in Modal Logic Tools, Last modified: 03 Mar 23; Accessed: February 2025,
2025. URL: https://www.cs.man.ac.uk/~schmidt/tools/.

[45] L. Mikec, Satisfiability verifiers for certain modal logics concerned with provability, Available at
https://luka.doublebuffer.net/o/il/, 2025. URL: https://github.com/luka-mikec/provability_sat.

[46] A. K. Simpson, Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary
GSOS, J. Log. Algebraic Methods Program. 60-61 (2004) 287–322. URL: https://doi.org/10.1016/j.
jlap.2004.03.004. doi:10.1016/J.JLAP.2004.03.004.

[47] A. K. Simpson, Compositionality via cut-elimination: Hennessy-milner logic for an arbitrary
GSOS, in: Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science, San
Diego, California, USA, June 26-29, 1995, IEEE Computer Society, 1995, pp. 420–430. URL: https:
//doi.org/10.1109/LICS.1995.523276. doi:10.1109/LICS.1995.523276.

[48] C. Perini Brogi, R. De Nicola, O. Inverso, Simpson’s proof systems for process verification:
A fine-tuning (short paper), in: U. de’Liguoro, M. Palazzo, L. Roversi (Eds.), Proceedings of
the 25th Italian Conference on Theoretical Computer Science, Torino, Italy, September 11-13,
2024, volume 3811 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 292–299. URL: https:
//ceur-ws.org/Vol-3811/paper050.pdf.

[49] G. Costa, C. Perini Brogi, Toward dynamic epistemic verification of zero-knowledge protocols,
in: G. D’Angelo, F. L. Luccio, F. Palmieri (Eds.), Proceedings of the 8th Italian Conference on
Cyber Security (ITASEC 2024), Salerno, Italy, April 8-12, 2024, volume 3731 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/Vol-3731/paper25.pdf.

[50] S. Docherty, R. N. Rowe, A non-wellfounded, labelled proof system for propositional dynamic
logic, in: International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, Springer, 2019, pp. 335–352.

[51] M. Acclavio, F. Montesi, M. Peressotti, On propositional dynamic logic and concurrency, arXiv
preprint arXiv:2403.18508 (2024).

https://doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.1007/978-3-030-88853-4_1
http://dx.doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.1145/3703595.3705882
https://doi.org/10.1145/3703595.3705882
http://dx.doi.org/10.1145/3703595.3705882
https://doi.org/10.48550/arXiv.2502.19311
http://dx.doi.org/10.48550/ARXIV.2502.19311
http://dx.doi.org/10.48550/ARXIV.2502.19311
http://arxiv.org/abs/2502.19311
https://doi.org/10.1007/978-3-319-21768-0_2
http://dx.doi.org/10.1007/978-3-319-21768-0_2
https://www.cs.man.ac.uk/~schmidt/tools/
https://luka.doublebuffer.net/o/il/
https://github.com/luka-mikec/provability_sat
https://doi.org/10.1016/j.jlap.2004.03.004
https://doi.org/10.1016/j.jlap.2004.03.004
http://dx.doi.org/10.1016/J.JLAP.2004.03.004
https://doi.org/10.1109/LICS.1995.523276
https://doi.org/10.1109/LICS.1995.523276
http://dx.doi.org/10.1109/LICS.1995.523276
https://ceur-ws.org/Vol-3811/paper050.pdf
https://ceur-ws.org/Vol-3811/paper050.pdf
https://ceur-ws.org/Vol-3731/paper25.pdf

[52] T. Dalmonte, N. Olivetti, S. Negri, Non-normal modal logics: Bi-neighbourhood semantics and its
labelled calculi, in: Advances in Modal Logic 2018, 2018.

[53] M. Girlando, S. Negri, N. Olivetti, V. Risch, Conditional beliefs: from neighbourhood semantics to
sequent calculus, The review of symbolic logic 11 (2018) 736–779.

[54] T. Dalmonte, N. Olivetti, G. Pozzato, C. Terrioux, HYPNO theorem proving with hypersequent
calculi for non-normal modal logics, Available at http://193.51.60.97:8000/HYPNO/, 2025.

[55] A. Das, I. van der Giessen, S. Marin, Intuitionistic Gödel-Löb logic, à la Simpson: Labelled systems
and birelational semantics, in: A. Murano, A. Silva (Eds.), 32nd EACSL Annual Conference on
Computer Science Logic, CSL 2024, February 19-23, 2024, Naples, Italy, volume 288 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, pp. 22:1–22:18. URL: https://doi.org/10.
4230/LIPIcs.CSL.2024.22. doi:10.4230/LIPICS.CSL.2024.22.

[56] A. Das, S. Marin, On intuitionistic diamonds (and lack thereof), in: International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, Springer, 2023, pp. 283–301.

[57] M. Girlando, M. Morales, MOILab: a prototype theorem prover for intuitionistic modal logic IK
based on labelled sequents, Available at https://www.mariannagirlando.com/MOILab.html, 2025.

http://193.51.60.97:8000/HYPNO/
https://doi.org/10.4230/LIPIcs.CSL.2024.22
https://doi.org/10.4230/LIPIcs.CSL.2024.22
http://dx.doi.org/10.4230/LIPICS.CSL.2024.22
https://www.mariannagirlando.com/MOILab.html

	1 Introduction
	1.1 Source code

	2 Modular completeness proof, formalised
	2.1 HOLMS framework
	2.2 Syntax and semantics
	2.3 Completeness theorem

	3 Related and future work

